首页
会员中心
到顶部
到尾部
Python教程

机器学习 - 线性回归

时间:2020/11/2 13:25:59  作者:  来源:  查看:0  评论:0
内容摘要:机器学习 - 线性回归散点图多项式回归回归当您尝试找到变量之间的关系时,会用到术语“回归”(regression)。在机器学习和统计建模中,这种关系用于预测未来事件的结果。线性回归线性回归使用数据点之间的关系在所有数据点之间画一条直线。这条线可以用来预测未来的值。在机器学习中,预...

机器学习 - 线性回归

回归

当您尝试找到变量之间的关系时,会用到术语“回归”(regression)。

在机器学习和统计建模中,这种关系用于预测未来事件的结果。

线性回归

线性回归使用数据点之间的关系在所有数据点之间画一条直线。

这条线可以用来预测未来的值。

机器学习 - 线性回归

在机器学习中,预测未来非常重要。

工作原理

Python 提供了一些方法来查找数据点之间的关系并绘制线性回归线。我们将向您展示如何使用这些方法而不是通过数学公式。

在下面的示例中,x 轴表示车龄,y 轴表示速度。我们已经记录了 13 辆汽车通过收费站时的车龄和速度。让我们看看我们收集的数据是否可以用于线性回归:

实例

首先绘制散点图:

import matplotlib.pyplot as pltx = [5,7,8,7,2,17,2,9,4,11,12,9,6]y = [99,86,87,88,111,86,103,87,94,78,77,85,86]plt.scatter(x, y)plt.show()

结果:

机器学习 - 线性回归

运行实例

实例

导入 scipy 并绘制线性回归线:

import matplotlib.pyplot as pltfrom scipy import statsx = [5,7,8,7,2,17,2,9,4,11,12,9,6]y = [99,86,87,88,111,86,103,87,94,78,77,85,86]slope, intercept, r, p, std_err = stats.linregress(x, y)def myfunc(x):  return slope * x + interceptmymodel = list(map(myfunc, x))plt.scatter(x, y)plt.plot(x, mymodel)plt.show()

结果:

机器学习 - 线性回归

运行实例

例子解释

导入所需模块:

import matplotlib.pyplot as pltfrom scipy import stats

创建表示 x 和 y 轴值的数组:

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

执行一个方法,该方法返回线性回归的一些重要键值:

slope, intercept, r, p, std_err = stats.linregress(x, y)

创建一个使用 slopeintercept 值的函数返回新值。这个新值表示相应的 x 值将在 y 轴上放置的位置:

def myfunc(x):  return slope * x + intercept

通过函数运行 x 数组的每个值。这将产生一个新的数组,其中的 y 轴具有新值:

mymodel = list(map(myfunc, x))

绘制原始散点图:

plt.scatter(x, y)

绘制线性回归线:

plt.plot(x, mymodel)

显示图:

plt.show()

R-Squared

重要的是要知道 x 轴的值和 y 轴的值之间的关系有多好,如果没有关系,则线性回归不能用于预测任何东西。

该关系用一个称为 r 平方(r-squared)的值来度量。

r 平方值的范围是 0 到 1,其中 0 表示不相关,而 1 表示 100% 相关。

Python 和 Scipy 模块将为您计算该值,您所要做的就是将 x 和 y 值提供给它:

实例

我的数据在线性回归中的拟合度如何?

from scipy import statsx = [5,7,8,7,2,17,2,9,4,11,12,9,6]y = [99,86,87,88,111,86,103,87,94,78,77,85,86]slope, intercept, r, p, std_err = stats.linregress(x, y)print(r)

运行实例

注释:结果 -0.76 表明存在某种关系,但不是完美的关系,但它表明我们可以在将来的预测中使用线性回归。

预测未来价值

现在,我们可以使用收集到的信息来预测未来的值。

例如:让我们尝试预测一辆拥有 10 年历史的汽车的速度。

为此,我们需要与上例中相同的 myfunc() 函数:

def myfunc(x):  return slope * x + intercept

实例

预测一辆有 10年车龄的汽车的速度:

from scipy import statsx = [5,7,8,7,2,17,2,9,4,11,12,9,6]y = [99,86,87,88,111,86,103,87,94,78,77,85,86]slope, intercept, r, p, std_err = stats.linregress(x, y)def myfunc(x):  return slope * x + interceptspeed = myfunc(10)print(speed)

运行实例

该例预测速度为 85.6,我们也可以从图中读取:

机器学习 - 线性回归

糟糕的拟合度?

让我们创建一个实例,其中的线性回归并不是预测未来值的最佳方法。

实例

x 和 y 轴的这些值将导致线性回归的拟合度非常差:

import matplotlib.pyplot as pltfrom scipy import statsx = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]slope, intercept, r, p, std_err = stats.linregress(x, y)def myfunc(x):  return slope * x + interceptmymodel = list(map(myfunc, x))plt.scatter(x, y)plt.plot(x, mymodel)plt.show()

结果:

机器学习 - 线性回归

运行实例

以及 r-squared 值?

实例

您应该得到了一个非常低的 r-squared 值。

import numpyfrom scipy import statsx = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]slope, intercept, r, p, std_err = stats.linregress(x, y)print(r)

运行实例

结果:0.013 表示关系很差,并告诉我们该数据集不适合线性回归。



相关评论
广告联系QQ:45157718 点击这里给我发消息 电话:13516821613 杭州余杭东港路118号雷恩国际科技创新园  网站技术支持:黄菊华互联网工作室 浙ICP备06056032号