首页
会员中心
到顶部
到尾部
Python教程

机器学习 - 正态数据分布

时间:2020/11/2 13:26:00  作者:  来源:  查看:0  评论:0
内容摘要:机器学习 - 正态数据分布数据分布散点图正态数据分布(Normal Data Distribution)在上一章中,我们学习了如何创建给定大小且在两个给定值之间的完全随机数组。在本章中,我们将学习如何创建一个将值集中在给定值周围的数组。在概率论中,在数学家卡尔·弗里德里希·高斯(...

机器学习 - 正态数据分布

正态数据分布(Normal Data Distribution)

在上一章中,我们学习了如何创建给定大小且在两个给定值之间的完全随机数组。

在本章中,我们将学习如何创建一个将值集中在给定值周围的数组。

在概率论中,在数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss)提出了这种数据分布的公式之后,这种数据分布被称为正态数据分布或高斯数据分布。

实例

典型的正态数据分布:

import numpyimport matplotlib.pyplot as pltx = numpy.random.normal(5.0, 1.0, 100000)plt.hist(x, 100)plt.show()

结果:

机器学习 - 正态数据分布

运行实例

注释:由于正态分布图具有钟形的特征形状,因此也称为钟形曲线。

直方图解释

我们使用 numpy.random.normal() 方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。

我们指定平均值为 5.0,标准差为 1.0。

这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。

从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。



相关评论
广告联系QQ:45157718 点击这里给我发消息 电话:13516821613 杭州余杭东港路118号雷恩国际科技创新园  网站技术支持:黄菊华互联网工作室 浙ICP备06056032号